Relación entre involucramiento del estudiante y rendimiento académico en el curso introductorio de Programación para Ingeniería
Publicado Oct 5, 2023
Resumen
Uno de los objetivos de crecimiento económico del Estado de Nuevo León es lograr el desarrollo de Industria 4.0 que requiere el desarrollo de competencias en programación y la graduación anual de más ingenieros. Por otra parte, los porcentajes de aprobación en la materia introductoria de programación han sido menores que en el resto de las materias de ingeniería en una universidad privada del Noreste de México por lo que se ha investigado esta situación con base en teoría del involucramiento del estudiante. El propósito de este estudio fue analizar el involucramiento de estudiantes de primer año de Ingeniería en la materia de programación y su relación con el rendimiento académico. Se diseñó un estudio relacional realizado sobre una muestra de 123 estudiantes de primer semestre, se examinaron y seleccionaron las analíticas que provee el sistema Blackboard y se aplicó un estudio correlacional entre analíticas de Blackboard y el rendimiento académico medido por la calificación final del estudiante mediante el cálculo de coeficiente de Spearman. Se encontró una relación moderada significativa y positiva tanto entre la actividad del estudiante en la plataforma y el rendimiento académico (rho(116) =.448, p<.001 con potencia estadística de .970), como entre el tiempo invertido en la plataforma y el rendimiento académico (rho(116) =.447, p<.01 con potencia estadística de .995). Debido a la relación encontrada, es importante el monitoreo frecuente de la actividad del alumno en la plataforma para fomentar el involucramiento desde etapas tempranas del período académico en la materia introductoria de programación.
##plugins.themes.bootstrap3.article.details##
Cómo citar
Descargar Cita
Descargas
Citas
Ahmed, K., & Mesonovich, M. (2019). Learning Management Systems and Student Performance. International Journal of Sustainable Energy Development (IJSED), 7(1), 582 – 591.
Akai, E., & Koral Gumusoglu, E. (2020). The impact of learning management systems on students´achievement in language exams. Turkish Online Journal of Distance Education-TOJDE, 21(4), 12, 206 – 222.
ANUIES (2022). Asociación Nacional de Universidades e Instituciones de Educación Superior. Año escolar 2021 – 2022. México. http://www.anuies.mx/informacion-y-servicios/informacion-estadistica-de-educacion-superior/anuario-estadistico-de-educacion-superior
Astin, A. (1984). Student involvement: A developmental theory for higher education. Journal of college student personnel, 25(4), 297–308.
Atwell, A., Mrusek, B., Solti, J., & Wilson, K. (2021). Risks to Student Achievement in Higher Education. Advances in Human Factors in Training, Education, and Learning Sciences, 269. https://doi.org/10.1007/978-3-030-80000-0_20
Barbera, S. A., Berkshire, S. D., Boronat, C. B., & Kennedy, M. H. (2020). Review of undergraduate student retention and graduation since 2010: Patterns, predictions, and recommendations for 2020. Journal of College Student Retention: Research, Theory & Practice, 22(2), 227–250.
Bayoumy, H., & Alsayed, S. (2021). Investigating Relationship of Perceived Learning Engagement, Motivation, and Academic Performance Among Nursing Students: A Multisite Study. Advances in Medical Education and Practice, 12, 351 – 369.
Bean, J., & Metzner, B.(1985). A Conceptual Model of Nontraditional Undergraduate Student Attrition. Review of Educational Research, 55(4), 485 – 540. https://doi.org/10.3102/00346543055004485
Broadbent, J. (2016). Academic success is about self-efficacy rather than frequency of use of the learning management system. Australasian Journal of Educational Technology, 32(4).
Bulut, O., Gorgun, G., Yildirim-Erbasli, S., Wongvorachan. T., Daniels, L., Gao, Y., Ka Wing, L., & Shin. J. (2023) Online formative assessments as the foundation for predictive learning analytics models. British Journal of Educational Technology, 54(1), 19 – 39. https://doi.org/10.1111/bjet.13276
Burch, G., Heller, N., Burch, J., Freed, R., & Steed, S. (2015). Student Engagement: Developing a Conceptual Framework and Survey Instrument, Journal of Education for Business, 90(4), 224 – 229. https://doi.org/10.1080/08832323.2015.1019821
Cárdenas Castro, M., & Arancibia Martini, H. (2014) Potencia estadística y cálculo del tamaño del efecto en G*Power: complementos a la prueba de significación estadística y su aplicación en Psicología. Salud y Sociedad, 5(2), 210 - 224.
Christenson, S. L., Reschly, A. L., Appleton, J. J., Berman-Young, S., Spangers, D., & Varro, P. (2008). Best practices in fostering student engagement. A. Thomas, & J. Grimes (Eds.), Best practices in school psychology, V, 1099-1120.
Christenson, S. L., Reschly, A. L., & Wylie, C. (2012). Handbook of Research on Student Engagement. Springer.
Clark-Carter D.(2019). Quantitative Psychological Research. Routledge.
Curione, K., Huertas, J., Ortuño, V., Gründler, V., & Píriz, L. (2019). Validación del bloque Estrategias de aprendizaje del MSLQ con estudiantes universitarios uruguayos. Revista Interamericana de Psicología/Interamerican Journal of Psychology (IJP), 53(1), 66 - 80.
Curtis H.(2016). Measuring Student Engagement in Technology-Mediated Learning Environments. [Tesis doctoral] Brigham Young University. https://scholarsarchive.byu.edu
Dahlstrom, E., & Bichsel, J. (2014). ECAR Study of Undergraduate Students and Information Technology, ECAR Survey, https://net.educause.edu/ir/library/pdf/ss14/ERS1406.pdf
Darko, C. (2021). An Evaluation of How Students Use Blackboard and the Possible Link to Their Grades. SAGE Open, 11(4). https://doi.org/10.1177/21582440211067245
Delfino A. (2019). Student Engagement and Academic Performance of Students of Partido State University. Asian Journal of University Education, 15(1).
Faul, F., Erdfelder, E., Buchner, A., & Lang, A. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41, 1149 - 1160.
Ferreyra, M., Avitabile, C., Botero Álvarez, J., Haimovich Paz, F., & Urzúa, S. (2017). Momento decisivo. La educación superior en América Latina y el Caribe. Grupo Banco Mundial.
Firat, M. (2016). Determining the effects of LMS learning behaviors on academic achievement in a learning analytic perspective. Journal of Information Technology Education: Research, 15, 75-87. http://www.jite.org/documents/Vol15/JITEv15ResearchP075-087Firat1928.pdf
Fleur, D., van den Bos, W., & Bredeweg, B. (2023). Social comparison in learning analytics dashboard supporting motivation and academic achievement. Computers and Education Open. 4(100130) 1 – 11. https://www.sciencedirect.com/journal/computers-and-education-open
Flores Tapia, C., & Flores Ceballos, K. (2021). Pruebas para comprobar la normalidad de datos en procesos productivos: Anderson-Darling, Ryan-Joyner, Shapiro-Wilk y Kolgomorov-Smirnov. Societas. Revista de Ciencias Sociales y Humanísticas Universidad de Panamá, 3(2) 83 – 97.
Franklin, M., Chan, J., Gardner, K., Measom, E., Sandberg, B., Irvine, J., & Kimmons, R. (2021). Higher Education: A History of Research Trends from 1970 to 2020. In R. Kimmons & J. Irvine (Eds.), 50 Years of Education Research Trends. Open Scholars Press. https://openscholarspress.org/50_years/higher_education
Fredricks, J., Blumenfeld, P., & Paris, A. (2004). School engagement: Potential of the concept, state of the evidence. Review of educational research, 74(1), 59 – 109.
Fredricks, J., Filsecker, M., & Lawson, M. (2016). Student engagement, context, and adjustment: Addressing definitional, measurement, and methodological issues. Learning and Instruction, 43, 1 – 4.
Gardner, C., Jones, A., & Jefferis, H. (2020). Analytics for Tracking Student Engagement. Journal of Interactive Media in Education, 1(22). http://doi.org/10.5334/jime.590
Glapaththi, I., Dissanayake, R., Welgama, T., Somachandara, U., Weerarathna, R., & Pathirana, G. (2019). A Study on the Relationship between Student Engagement and Their Academic Achievements. Asian Social Science, 15(11), 1 - 16.
Gunuc, S. (2014). The relationships between student engagement and their academic achievement. International Journal on New Trends in Education and Their Implications, 5(4), 4 – 19.
Hair Jr., J., Black, W., Babin, B. & Anderson, R. (2019). Multivariate Data Analysis, Eighth Edition. Cengage.
Hair Jr., J., Page, M., & Brunsveld, N. (2020). Essentials of Business Research Methods. Fourth Edition. Routledge.
Halverson, L., & Graham, C. (2019). Learner engagement in blended learning environments: A conceptual framework. Online Learning, 23(2), 145-178. https://doi.org/10.24059/olj.v23i2.1481
Henrie, C., Halverson, L., & Graham, Ch. (2015). Measuring student engagement in technology-mediated learning: A review. Computers & Education, 90, 36 – 53.
Hernández Barrios, A., & Camargo Uribe, A. (2017). Autorregulación del aprendizaje en la educación superior en Iberoamérica: una revisión sistemática. Revista Latinoamericana de Psicología, 49(2), 146 - 160.
Hernández Sampieri, R., & Mendoza Torres, C. (2018). Metodología de la investigación. Las rutas cuantitativa, cualitativa y mixta. McGraw Hill Education.
Kahu, E., & Nelson, K. (2018). Student engagement in the educational interface: Understanding the mechanisms of student success. Higher Education Research & Development, 37(1), 58 - 71.
Kanaparan, G., Cullen, R., & Mason, D. (2017). Self efficacy & Engagement on Students. Australasian Journal of Information Systems. Vol 23, Selected Papers from ACIS.
Karabıyık, C. (2019). The relationship between student engagement and tertiary level English Language Learners´s Achievement. International Online Journal of Education and Teaching (IOJET), 6(2), 281-293.
Kuh, G. (2009). The National Survey of Student Engagement: Conceptual and Empirical Foundations. New Directions for Institutional Research. Wiley Periodicals, 141. https://doi.org/10.1002/ir.283
Kumar, S., Agarwal, M., & Agarwal, N. (2021). Defining And Measuring Academic Performance of Hei Students-A Critical Review. Turkish Journal of Computer and Mathematics Education, 12(6), 3091 – 3105.
Li, I., & Carroll, D. (2017). Factors Influencing University Student Satisfaction, Dropout and Academic Performance: An Australian Higher Education Equity Perspective. National Centre for Student Equity in Higher Education (NCSEHE), Curtin University: Perth.
Liz-Domínguez, M., Llamas-Nistal, M., Caeiro-Rodríguez, M., & Mikic-Fonte, M.(2022) LMS Logs and Student Performance: The Influence of Retaking a Course. In Global Engineering Education Conference, https://doi.org/10.1109/EDUCON52537.2022.9766691
Lu, O., Huang, J., Huang, A., & Yang, S. (2017) Applying learning analytics for improving students engagement and learning outcomes in an MOOCs enabled collaborative programming course, Interactive Learning Environments, 25(2), 220 – 234. https://doi.org/10.1080/10494820.2016.1278391
Mandernach, B. (2015). Assessment of Student Engagement in Higher Education: A Synthesis of Literature and Assessment Tools. International Journal of Learning, Teaching and Educational Research, 12(2), 1-14.
Meseret, G., & Ananda, R. (2018). University Students’ Engagement and Academic Achievement in Ethiopian Public Universities. Journal of Advances and Scholarly Researches in Allied Education, Multidisciplinary Academic Research, 15(12), 115 – 122.
Morales Vallejo (2012). Estadística aplicada a las Ciencias Sociales. Universidad Pontificia Comillas, Madrid, Facultad de Humanidades, http://www.upcomillas.es/personal/peter/investigacion/Tama%F1oMuestra.pdf
Nuevo León (2017). Presentación sobre el Plan de Desarrollo Industrial del Gobierno del Estado de Nuevo León, iniciativa Nuevo León 4.0: un ecosistema de colaboración entre Gobierno, Academia e Industria. México. http://www.nl.gob.mx/publicaciones/nuevo-leon-40
Nuevo León (2022). Plan estratégico 2030. Consejo Nuevo León. https://planestrategico.conl.mx/desarrollo-economico
OECD (2017). Education at a Glance 2017: OECD Indicators. Paris: OECD Publishing.
Pértegas Díaz, S., & Pita Fernández, S. (2002). Investigación: Determinación del tamaño muestral para calcular la significación del coeficiente de correlación lineal. Unidad de Epidemiología Clínica y Bioestadística. Complexo Hospitalario Juan Canalejo. A Coruña.
PwC (2020). Skills for Industry Curriculum Guidelines 4.0. European Commission. Executive Agency for Small and Medium-sized Enterprises (EASME). https://doi.org/10.2826/097323
Qetesh, M., Saadh, M., Kharshid, A., & Acar, T. (2020). Impact of the Covıd-19 Pandemic on Academic Achievement and Self-Regulated Learning Behavior for Students of The Faculty of Pharmacy, Middle East University. Multicultural Education, 6(5).
Santabárbara, J. (2021). Cálculo del tamaño de muestra necesario para estimar el coeficiente de correlación de Pearson mediante sintaxis en SPSS. REIRE Revista d’Innovació i Recerca en Educació, 14(1), 1 – 7. https://doi.org/10.1344/reire2021.14.132565
Sakiz, H., Özdaş, F., Göksu, İ., & Ekinci, A. (2021). A Longitudinal Analysis of Academic Achievement and Its Correlates in Higher Education. SAGE Open.
Saygili, H., & Çetín, H. (2021). The Effects of Learning Management Systems (LMS) on Mathematics Achievement: A Meta-Analysis Study. Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education, 15(2), 341-362. https://doi.org/10.17522/balikesirnef.1026534
Schneider, M., & Preckel, F. (2017). Variables Associated With Achievement in Higher Education: A Systematic Review of Meta-Analyses. Psychological Bulletin. APA, 143(6), 565 – 600.
Shayan, P., & van Zaanen, M. (2019). Predicting Student Performance from Their Behavior in Learning Management Systems. International Journal of Information and Education Technology, 9(5), 337 – 341.
Sithole, A., Chiyaka, E., McCarthy, P., Mupinga, D., Bucklein, B., & Kibirige, J. (2017). Student Attraction, Persistence and Retention in STEM Programs: Successes and Continuing Challenges. Higher Education Studies, 7(1). https://doi.org/10.5539/hes.v7n1p46
Skinner, E., Kindermann, T., & Furrer, C. (2009). A Motivational Perspective on Engagement and Disaffection. Educational and Psychological Measurement. 69(3), 493-525.
SPSS v28 (2022). Statistical Package for Social Sciences. IBM Academic Initiative.
Tempelaar, D., Nguyen, Q., & Rienties, B. (2020). Learning Analytics and the Measurement of Learning Engagement. Ifenthaler D. & Gibson D. (Eds) Adoption of Data Analytics in Higher Education Learning and Teaching. Advances in Analytics for Learning and Teaching. Springer, Cham. https://doi.org/10.1007/978-3-030-47392-1_9
Tight, M. (2020). Student retention and engagement in higher education. Journal of Further and Higher Education, 44(5), 689–704. https://doi.org/10.1080/0309877X.2019.1576860
Tinto, V. (1975) Dropout from Higher Education: a theoretical synthesis of recent research. Review of Educational Research, 45(1), 89 -125.
Tinto, V. (2016). How to improve student persistence and completion (essay). https://www.insidehighered.com/views/2016/09/26/how-improve-student-persistence-and-completion-essay
Trowler, V. (2010). Student engagement literature review. The higher education academy, 11, 1 – 15.
Venugopal, G., & Rajashree, J. (2015). Influence of learning management system on student engagement. In IEEE 3rd International Conference on MOOCs, Innovation and Technology in Education (MITE). https://doi.org/10.1109/MITE.2015.7375358
Yamauchi, L., Taira, K., & Trevorrow, T. (2016). Effective instruction for engaging culturally diverse students in Higher education. International Journal of Teaching and Learning in Higher Education, 28(3), 460 – 470.
Zare, S., Zeinalipoor, H., & Naseri Jahromi R. (2017). Study of the relationship between self-regulated learners strategies with academic achievement. Research in Medical Education, 9(4), 57 - 49.
Zepke, N. (2018). Student Engagement in Neo-Liberal Times: what is missing? Higher Education Research and Development, 37(2), 433 - 446.
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.
Los autores que publican con esta revista aceptan los siguientes términos:
Los autores conservan los derechos de autor y conceden a la revista el derecho de primera publicación con la obra simultáneamente licenciada bajo una licencia de atribución de Creative Commons que permite a otros compartir el trabajo con un reconocimiento de la autoría del trabajo con uso no cormercial y la mención de la publicación inicial en esta revista.