Akkermansia muciniphila, una bacteria contra la obesidad y su relación con la dieta. Revisión sistemática


Resumen

La bacteria anaerobia Akkermansia muciniphila ha demostrado su papel en la regulación del metabolismo y los marcadores de inflamación desde su descubrimiento. Es una bacteria Gram negativa que se clasifica dentro del filo Verrucomicrobiae.  Es reconocida como una bacteria no patógena, desprovista de factores de virulencia y carente de una interacción significativa con el huésped que conduzca a la infección o enfermedad. Forma parte del microbioma intestinal humano y su mayor concentración se encuentra en los individuos de peso normal. Se realizó una revisión sistemática para analizar intervenciones clínicas dietéticas que examinan la asociación entre el fenotipo o estado de obesidad y la concentración de A. muciniphila en la microbiota intestinal, después de modificaciones nutricionales específicas en pacientes humanos con sobrepeso. La búsqueda de artículos se realizó utilizando Pubmed y Clinicalkey como motores de búsqueda. La terminología booleana ((Akkermansia muciniphila) and (obesidad))  and (intervención or nutrición or dieta or nutriente) se utilizó para seleccionar artículos relevantes para nuestra investigación. De los 301 artículos originales identificados, solo se seleccionaron aquellos que involucran intervenciones dietéticas en humanos. Los resultados indican que el aumento de A. muciniphila (ya sea mediante suplementación directa o intervención dietética) se asoció con efectos beneficiosos como disminución de la inflamación, reducción del riesgo cardiovascular, aumento de la sensibilidad a la insulina y reducción de los niveles de colesterol. En conclusión, se necesitan más intervenciones en seres humanos para determinar los beneficios y riesgos del aumento de las concentraciones de A. muciniphila.

Palabras clave: Akkermansia muciniphila, obesidad, intervención dietética

##plugins.themes.bootstrap3.article.details##

Cómo citar

Amaral Montesino, C. (2024). Akkermansia muciniphila, una bacteria contra la obesidad y su relación con la dieta. Revisión sistemática. MLS Health and Nutrition Research, 3(1). https://doi.org/10.60134/mlshn.v3n1.2741


Descargas

La descarga de datos todavía no está disponible.

Estadísticas


Citas

1. Guyton AC, John Edward Hall. Textbook of Medical Physiology. Saunders; 2006.

2. Servin AL. Antagonistic Activities of Lactobacilli and Bifidobacteria against Microbial Pathogens. FEMS Microbiology Reviews. 2004 Oct;28(4):405–40.

3. Vitale M, Giacco R, Laiola M, Della Pepa G, Luongo D, Mangione A, et al. Acute and Chronic Improvement in Postprandial Glucose Metabolism by a Diet Resembling the Traditional Mediterranean Dietary pattern: Can SCFAs Play a role? Clinical Nutrition. 2021 Feb;40(2):428–37.

4. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia Muciniphila and Intestinal Epithelium Controls diet-induced Obesity. Proceedings of the National Academy of Sciences. 2013 May 13;110(22):9066–71.

5. Shen J, Tong X, Sud N, Khound R, Song Y, Maldonado-Gomez MX, et al. Low-Density Lipoprotein Receptor Signaling Mediates the Triglyceride-Lowering Action of Akkermansia Muciniphila in Genetic-Induced Hyperlipidemia. Arteriosclerosis, Thrombosis, and Vascular Biology. 2016 Jul;36(7):1448–56.

6. Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, et al. Akkermansia Muciniphila and Improved Metabolic Health during a Dietary Intervention in obesity: Relationship with Gut Microbiome Richness and Ecology. Gut. 2015 Jun 22;65(3):426–36.

7. Depommier C, Everard A, Druart C, Plovier H, Van Hul M, Vieira-Silva S, et al. Supplementation with Akkermansia Muciniphila in Overweight and Obese Human volunteers: a proof-of-concept Exploratory Study. Nature Medicine. 2019 Jul;25(7):1096–103.

8. Roshanravan N, Bastani S, Tutunchi H, Kafil B, Nikpayam O, Mesri Alamdari N, et al. A Comprehensive Systematic Review of the Effectiveness of Akkermansia muciniphila, a Member of the Gut microbiome, for the Management of Obesity and Associated Metabolic Disorders. Archives of Physiology and Biochemistry. 2021 Jan 15;129(3):1–11.

9. Mujico JR, Baccan GC, Gheorghe A, Díaz LE, Marcos A. Changes in Gut Microbiota Due to Supplemented Fatty Acids in diet-induced Obese Mice. The British Journal of Nutrition [Internet]. 2013 Aug 1 [cited 2023 Jun 6];110(4):711–20. Available from: https://pubmed.ncbi.nlm.nih.gov/23302605/

10. Abuqwider JN, Mauriello G, Altamimi M. Akkermansia muciniphila, a New Generation of Beneficial Microbiota in Modulating Obesity: a Systematic Review. Microorganisms. 2021 May 20;9(5):1098.

11. Medina-Larqué AS, Rodríguez-Daza MC, Roquim M, Dudonné S, Pilon G, Levy É, et al. Cranberry Polyphenols and Agave Agavins Impact Gut Immune Response and Microbiota Composition While Improving Gut Barrier function,
inflammation, and Glucose Metabolism in Mice Fed an Obesogenic Diet. Frontiers in Immunology. 2022 Aug 16;13.

12. Zhang T, Li Q, Cheng L, Buch H, Zhang F. Akkermansia Muciniphila Is a Promising Probiotic. Microbial Biotechnology. 2019 Apr 21;12(6):1109–25.

13. Derrien M, Belzer C, de Vos WM. Akkermansia Muciniphila and Its Role in Regulating Host Functions. Microbial Pathogenesis. 2017 May;106:171–81.

14. Depommier C, Vitale RM, Iannotti FA, Silvestri C, Flamand N, Druart C, et al. Beneficial Effects of Akkermansia Muciniphila Are Not Associated with Major Changes in the Circulating Endocannabinoidome but Linked to Higher Mono-Palmitoyl-Glycerol Levels as New PPARα Agonists. Cells. 2021 Jan 19;10(1):185.

15. Bian X, Wu W, Yang L, Lv L, Wang Q, Li Y, et al. Administration of Akkermansia Muciniphila Ameliorates Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice. Frontiers in Microbiology. 2019 Oct 1;10.

16. Qian K, Chen S, Wang J, Sheng K, Wang Y, Zhang M. A β-N-acetylhexosaminidase Amuc_2109 from Akkermansia Muciniphila Protects against Dextran Sulfate Sodium-induced Colitis in Mice by Enhancing Intestinal Barrier and Modulating Gut Microbiota. Food & Function. 2022;4.

17. Rodrigues VF, Elias-Oliveira J, Pereira ÍS, Pereira JA, Barbosa SC, Machado MSG, et al. Akkermansia Muciniphila and Gut Immune System: a Good Friendship That Attenuates Inflammatory Bowel Disease, Obesity, and Diabetes. Frontiers in Immunology [Internet]. 2022 Jul 7;13. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9300896/pdf/fimmu-13-934695.pdf

18. Ashrafian F, Shahriary A, Behrouzi A, Moradi HR, Keshavarz Azizi Raftar S, Lari A, et al. Akkermansia muciniphila-Derived Extracellular Vesicles as a Mucosal Delivery Vector for Amelioration of Obesity in Mice. Frontiers in Microbiology. 2019 Oct 1;10.

19. Chelakkot C, Choi Y, Kim DK, Park HT, Ghim J, Kwon Y, et al. Akkermansia muciniphila-derived Extracellular Vesicles Influence Gut Permeability through the Regulation of Tight Junctions. Experimental & Molecular Medicine. 2018 Feb;50(2):e450–0.

20. Druart C, Plovier H, Van Hul M, Brient A, Phipps KR, Vos WM, et al. Toxicological Safety Evaluation of Pasteurized Akkermansia Muciniphila. Journal of Applied Toxicology. 2020 Jul 28;41(2):276–90.

21. Tagliamonte S, Laiola M, Ferracane R, Vitale M, Gallo MA, Meslier V, et al. Mediterranean Diet Consumption Affects the Endocannabinoid System in Overweight and Obese subjects: Possible Links with Gut microbiome, Insulin Resistance and Inflammation. European Journal of Nutrition. 2021 Mar 24;60.

22. Walker JM, Eckardt P, Aleman JO, Correa J, Liang Y, Tadasu Iizumi, et al. The effects of trans-resveratrol on insulin resistance, inflammation, and microbiota in men with the metabolic syndrome: A pilot randomized, placebo-controlled clinical trial. PubMed. 2019 Jan 10;4(2):122–35.

23. Xu D, Feng M, Chu Y, Wang S, Shete V, Tuohy KM, et al. The Prebiotic Effects of Oats on Blood Lipids, Gut Microbiota, and Short-Chain Fatty Acids in Mildly Hypercholesterolemic Subjects Compared with Rice: a Randomized, Controlled Trial. Frontiers in Immunology [Internet]. 2021 Dec 9;12:787797. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8697019/

24. Jie Z, Yu X, Liu Y, Sun L, Chen P, Ding Q, et al. The Baseline Gut Microbiota Directs Dieting-Induced Weight Loss Trajectories. Gastroenterology [Internet]. 2021 May 1 [cited 2022 Oct 14];160(6):2029-2042.e16. Available from: https://www.gastrojournal.org/article/S0016-5085(21)00096-2/fulltext

25. Wright SM, Aronne LJ. Causes of Obesity. Abdominal Radiology [Internet]. 2012 Mar 18;37(5):730–2. Available from: https://link.springer.com/article/10.1007/s00261-012-9862-x

26. Netto Candido TL, Alfenas R de CG, Bressan J. Dysbiosis and Metabolic Endotoxemia Induced by high-fat Diet. Nutrición Hospitalaria. 2018 Oct 17;35(6).

27. Sun L, Ma L, Ma Y, Zhang F, Zhao C, Nie Y. Insights into the Role of Gut Microbiota in obesity: pathogenesis, mechanisms, and Therapeutic Perspectives. Protein & Cell [Internet]. 2018 May [cited 2019 Nov 4];9(5):397–403. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5960470/

28. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Human gut microbes associated with obesity. Nature [Internet]. 2006 Dec;444(7122):1022–3. Available from: https://www.nature.com/articles/4441022a

29. Bibbò S, Ianiro G, Giorgio V, Scaldaferri F, Masucci L, Gasbarrini A, et al. The Role of Diet on Gut Microbiota Composition. European Review for Medical and Pharmacological Sciences [Internet]. 2016 Nov 1;20(22):4742–9. Available from: http://pubmed.ncbi.nlm.nih.gov/27906427

30. Kankaanpää PE, Salminen SJ, Isolauri E, Lee YK. The Influence of Polyunsaturated Fatty Acids on Probiotic Growth and Adhesion. FEMS Microbiology Letters [Internet]. 2001 Jan;194(2):149–53. Available from: https://academic.oup.com/femsle/article/194/2/149/489490

31. Rosendo-Silva D, Viana S, Carvalho E, Reis F, Paulo Matafome. Are Gut dysbiosis, Barrier disruption, and Endotoxemia Related to Adipose Tissue Dysfunction in Metabolic disorders? Overview of the Mechanisms Involved. Internal and Emergency Medicine. 2023 Apr 4;18.

32. Patterson E, O’ Doherty RM, Murphy EF, Wall R, O’ Sullivan O, Nilaweera K, et al. Impact of Dietary Fatty Acids on Metabolic Activity and Host Intestinal Microbiota Composition in C57BL/6J Mice. British Journal of Nutrition. 2014 Feb 20;111(11):1905–17.

33. de Wit N, Derrien M, Bosch-Vermeulen H, Oosterink E, Keshtkar S, Duval C, et al. Saturated Fat Stimulates Obesity and Hepatic Steatosis and Affects Gut Microbiota Composition by an Enhanced Overflow of Dietary Fat to the Distal Intestine. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2012 Sep 1;303(5):G589–99.

34. Tidjani Alou M, Lagier JC, Raoult D. Diet Influence on the Gut Microbiota and Dysbiosis Related to Nutritional Disorders. Human Microbiome Journal. 2016 Sep;1:3–11.

35. Roshanravan N, Mahdavi R, Alizadeh E, Ghavami A, Rahbar Saadat Y, Naimeh Mesri Alamdari, et al. The Effects of Sodium Butyrate and Inulin Supplementation on Angiotensin Signaling Pathway via Promotion of Akkermansia Muciniphila Abundance in Type 2 diabetes; a randomized, double-blind, placebo-controlled Trial. Journal of Cardiovascular and Thoracic Research. 2017 Nov 25;9(4):183–90.

36. Payahoo L, Khajebishak Y, Alivand MR, Soleimanzade H, Alipour S, Barzegari A, et al. Investigation the Effect of Oleoylethanolamide Supplementation on the Abundance of Akkermansia Muciniphila Bacterium and the Dietary Intakes in People with obesity: a Randomized Clinical Trial. Appetite. 2019 Oct;141:104301.

37. Guevara-Cruz M, Godinez-Salas ET, Mónica Sánchez-Tapia, Torres-Villalobos G, Pichardo-Ontiveros E, Rocío Guizar-Heredia, et al. Genistein Stimulates Insulin Sensitivity through Gut Microbiota Reshaping and Skeletal Muscle AMPK Activation in Obese Subjects. Open Diabetes Res Care. 2020 Mar 1;8(1):e000948–8.

38. Łagowska K, Drzymała-Czyż S. A Low Glycemic Index, Energy-restricted Diet but Not Lactobacillus Rhamnosus Supplementation Changes Fecal short-chain Fatty Acid and Serum Lipid Concentrations in Women with Overweight or Obesity and Polycystic Ovary Syndrome. European Review for Medical and Pharmacological Sciences [Internet]. 2022 Feb 1 [cited 2023 Apr 30];26(3):917–26. Available from: https://pubmed.ncbi.nlm.nih.gov/35179758/

39. Netea MG, Domínguez-Andrés J, Barreiro LB, Chavakis T, Divangahi M, Fuchs E, et al. Defining Trained Immunity and Its Role in Health and Disease. Nature Reviews Immunology. 2020 Mar 4;20(6):375–88.

40. Bäck M, Yurdagul A, Tabas I, Öörni K, Kovanen PT. Inflammation and Its Resolution in atherosclerosis: Mediators and Therapeutic Opportunities. Nature Reviews Cardiology [Internet]. 2019 Mar 7;16(7). Available from: https://www.nature.com/articles/s41569-019-0169-2

41. Guevara-Cruz M, Godinez-Salas ET, Mónica Sánchez-Tapia, Torres-Villalobos G, Pichardo-Ontiveros E, Rocío Guizar-Heredia, et al. Genistein Stimulates Insulin Sensitivity through Gut Microbiota Reshaping and Skeletal Muscle AMPK Activation in Obese Subjects. Open Diabetes Res Care. 2020 Mar 1;8(1):e000948–8.

42. Pogue A, Jaber I, Zhao Y, Lukiw W. Systemic Inflammation in C57BL/6J Mice Receiving Dietary Aluminum Sulfate; Up-Regulation of the Pro-Inflammatory Cytokines IL-6 and TNFα, C-Reactive Protein (CRP) and miRNA-146a in Blood Serum. Journal of Alzheimer’s Disease & Parkinsonism. 2017;07(06).

43. Ouyang J, Lin J, Isnard S, Fombuena B, Peng X, Marette A, et al. The Bacterium Akkermansia muciniphila: a Sentinel for Gut Permeability and Its Relevance to HIV-Related Inflammation. Frontiers in Immunology. 2020 Apr 9;11.

44. Rodríguez-Daza MC, de Vos WM. Polyphenols as Drivers of a Homeostatic Gut Microecology and Immuno-Metabolic Traits of Akkermansia muciniphila: from Mouse to Man. International Journal of Molecular Sciences. 2022 Dec 20;24(1):45.

45. Cao MZ, Wei CH, Wen MC, Song Y, Srivastava K, Yang N, et al. Clinical Efficacy of Weight Loss Herbal Intervention Therapy and Lifestyle Modifications on Obesity and Its Association with Distinct Gut microbiome: a Randomized double-blind Phase 2 Study. Frontiers in Endocrinology. 2023 Mar 22;14