Tratamiento Médico Nutrimental en pacientes con COVID-19


Resumen

Introducción. Los coronavirus son una extensa familia de virus que pueden causar enfermedades tanto en animales como en humanos. En los humanos, se sabe que varios coronavirus causan infecciones respiratorias que pueden ir desde el resfriado común hasta enfermedades más graves como el síndrome respiratorio de Oriente Medio (MERS) y el síndrome respiratorio agudo severo (SARS). Método. El tratamiento médico nutricional es de suma importancia, dado las altas necesidades energéticas y proteicas asociadas al gasto energético que conlleva la enfermedad, Y en la fase de recuperación, que puede ser larga. Una alimentación poco adecuada, tanto si se asocia a un cuadro de sobrepeso u obesidad como a un cuadro de desnutrición, puede influir notablemente en la evolución de la Covid-19. Por ello, a los pacientes ingresados por Covid-19 hay que nutrirles adecuadamente.

Palabras clave: BCAA, aminoácidos de cadena ramificada, resistencia a la insulina, obesidad, diabetes mellitus

##plugins.themes.bootstrap3.article.details##

Cómo citar

Penchyna Nieto, M. (2022). Tratamiento Médico Nutrimental en pacientes con COVID-19. MLS Health and Nutrition Research, 1(1). Recuperado a partir de https://www.mlsjournals.com/MLS-Health-Nutrition/article/view/821


Descargas

La descarga de datos todavía no está disponible.

Citas

(1) Garber AJ. Obesity and type 2 diabetes: which patients are at risk? Diabetes Obes Metab. 2012 May;14(5):399-408. Disponible en: http://dx.doi.org/10.1111/j.1463-1326.2011.01536.x

(2) Reaven GM. Insulin resistance/compensatory hyperinsulinemia, essential hypertension, and cardiovascular disease. J Clin Endocrinol Metab. 2003 Jun;88(6):2399-403. Disponible en: http://dx.doi.org/10.1210/jc.2003-030087

(3) Hansen TT, Astrup A, Sjödin A. Are Dietary Proteins the Key to Successful Body Weight Management? A Systematic Review and Meta-Analysis of Studies Assessing Body Weight Outcomes after Interventions with Increased Dietary Protein. Nutrients. 2021 Sep 14;13(9):3193. Disponible en: http://dx.doi.org/10.3390/nu13093193

(4) Gil Á. Tratado de nutrición. Tomo 1. Bases fisiológicas y bioquímicas de la nutrición. Medicina contreras (ed.). Madrid: Acción Medica; 2005

(5) Greco E, Winquist A, Lee, T. J., Collins, S., Lebovic, Z., Zerbe-Kessinger, T, et al. The role of source of protein in regulation of food intake, satiety, body weight and body composition. J. Nutr. Health Food Eng. 2017;6(6):186-193. Disponible en: http://dx.doi.org/10.15406/jnhfe.2017.06.00223

(6) Huang G, Pencina K, Li Z, Apovian CM, Travison TG, Storer TW, et al. Effect of Protein Intake on Visceral Abdominal Fat and Metabolic Biomarkers in Older Men With Functional Limitations: Results From a Randomized Clinical Trial. J Gerontol A Biol Sci Med Sci. 2021 May 22;76(6):1084-1089. Disponible en: http://dx.doi.org/10.1093/gerona/glab007

(7) El Khoury D, Hwalla N. Metabolic and appetite hormone responses of hyperinsulinemic normoglycemic males to meals with varied macronutrient compositions. Ann Nutr Metab. 2010;57(1):59-67. Disponible en: http://dx.doi.org/10.1159/000317343

(8) Rietman A, Schwarz J, Tomé D, Kok FJ, Mensink M. High dietary protein intake, reducing or eliciting insulin resistance? Eur J Clin Nutr. 2014 Sep;68(9):973-9. Disponible en: http://dx.doi.org/10.1038/ejcn.2014.123

(9) Ricci G, Canducci E, Pasini V, Rossi A, Bersani G, Ricci E, et al. Nutrient intake in Italian obese patients: relationships with insulin resistance and markers of non-alcoholic fatty liver disease. Nutrition. 2011 Jun;27(6):672-6. Disponible en: http://dx.doi.org/10.1016/j.nut.2010.07.014

(10) Sluijs I, Beulens JW, van der A DL, Spijkerman AM, Grobbee DE, van der Schouw YT. Dietary intake of total, animal, and vegetable protein and risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-NL study. Diabetes Care. 2010 Jan;33(1):43-8. Disponible en: http://dx.doi.org/10.2337/dc09-1321

(11) Layman DK, Baum JI. Dietary protein impact on glycemic control during weight loss. J Nutr. 2004 Apr;134(4):968S-73S. Disponible en: http://dx.doi.org/10.1093/jn/134.4.968S

(12) Nair KS, Short KR. Hormonal and signaling role of branched-chain amino acids. J Nutr. 2005 Jun;135(6 Suppl):1547S-52S. Disponible en: http://dx.doi.org/10.1093/jn/135.6.1547S

(13) Haydar S, Paillot T, Fagot C, Cogne Y, Fountas A, Tutuncu Y, et al. Branched-Chain Amino Acid Database Integrated in MEDIPAD Software as a Tool for Nutritional Investigation of Mediterranean Populations. Nutrients. 2018 Oct 1;10(10):1392. Disponible en: http://dx.doi.org/10.3390/nu10101392

(14) Layman DK, Walker DA. Potential importance of leucine in treatment of obesity and the metabolic syndrome. J Nutr. 2006 Jan;136(1 Suppl):319S-23S. Disponible en: http://dx.doi.org/10.1093/jn/136.1.319S

(15) Doi M, Yamaoka I, Nakayama M, Sugahara K, Yoshizawa F. Hypoglycemic effect of isoleucine involves increased muscle glucose uptake and whole body glucose oxidation and decreased hepatic gluconeogenesis. Am J Physiol Endocrinol Metab. 2007 Jun;292(6):E1683-93. Disponible en: http://dx.doi.org/10.1152/ajpendo.00609.2006

(16) Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009 Apr;9(4):311-26. Disponible en: http://dx.doi.org/10.1016/j.cmet.2009.02.002

(17) Boirie Y, Dangin M, Gachon P, Vasson MP, Maubois JL, Beaufrère B. Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14930-5. Disponible en: http://dx.doi.org/10.1073/pnas.94.26.14930

(18) Dangin M, Boirie Y, Garcia-Rodenas C, Gachon P, Fauquant J, Callier P, et al. The digestion rate of protein is an independent regulating factor of postprandial protein retention. Am J Physiol Endocrinol Metab. 2001 Feb;280(2):E340-8. Disponible en: http://dx.doi.org/10.1152/ajpendo.2001.280.2.E340

(19) Harper AE, Miller RH, Block KP. Branched-chain amino acid metabolism. Annu Rev Nutr. 1984;4:409-54. Disponible en: http://dx.doi.org/10.1146/annurev.nu.04.070184.002205

(20) Stipanuk, Martha H., and Marie A. Caudill. Biochemical, physiological, and molecular aspects of human nutrition-E-book. Elsevier health sciences, 2018.

(21) Jahan-Mihan A, Luhovyy BL, El Khoury D, Anderson GH. Dietary proteins as determinants of metabolic and physiologic functions of the gastrointestinal tract. Nutrients. 2011 May;3(5):574-603. Disponible en: http://dx.doi.org/10.3390/nu3050574

(22) Brosnan JT, Brosnan ME. Branched-chain amino acids: enzyme and substrate regulation. J Nutr. 2006 Jan;136(1 Suppl):207S-11S. Disponible en: http://dx.doi.org/10.1093/jn/136.1.207S

(23) Holeček M. Branched-chain amino acids in health and disease: metabolism, alterations in blood plasma, and as supplements. Nutr Metab (Lond). 2018 May 3;15:33. Disponible en: http://dx.doi.org/10.1186/s12986-018-0271-1

(24) Blomstrand E, Eliasson J, Karlsson HK, Köhnke R. Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J Nutr. 2006 Jan;136(1 Suppl):269S-73S. Disponible en: http://dx.doi.org/10.1093/jn/136.1.269S

(25) Wolfe RR. Branched-chain amino acids and muscle protein synthesis in humans: myth or reality? J Int Soc Sports Nutr. 2017 Aug 22;14:30. Disponible en: http://dx.doi.org/10.1186/s12970-017-0184-9

(26) Nie C, He T, Zhang W, Zhang G, Ma X. Branched Chain Amino Acids: Beyond Nutrition Metabolism. Int J Mol Sci. 2018 Mar 23;19(4):954. Disponible en: http://dx.doi.org/10.3390/ijms19040954

(27) Zhang S, Zeng X, Ren M, Mao X, Qiao S. Novel metabolic and physiological functions of branched chain amino acids: a review. J Anim Sci Biotechnol. 2017 Jan 23;8:10. Disponible en: http://dx.doi.org/10.1186/s40104-016-0139-z

(28) Tsochatzis EA, Bosch J, Burroughs AK. Liver cirrhosis. Lancet. 2014 May 17;383(9930):1749-61. Disponible en: http://dx.doi.org/10.1016/S0140-6736(14)60121-5

(29) Holecek M, Kandar R, Sispera L, Kovarik M. Acute hyperammonemia activates branched-chain amino acid catabolism and decreases their extracellular concentrations: different sensitivity of red and white muscle. Amino Acids. 2011 Feb;40(2):575-84. Disponible en: http://dx.doi.org/10.1007/s00726-010-0679-z

(30) Holeček M. Branched-chain amino acid supplementation in treatment of liver cirrhosis: Updated views on how to attenuate their harmful effects on cataplerosis and ammonia formation. Nutrition. 2017 Sep;41:80-85. Disponible en: http://dx.doi.org/10.1016/j.nut.2017.04.003

(31) Nishitani S, Takehana K, Fujitani S, Sonaka I. Branched-chain amino acids improve glucose metabolism in rats with liver cirrhosis. Am J Physiol Gastrointest Liver Physiol. 2005 Jun;288(6):G1292-300. Disponible en: http://dx.doi.org/10.1152/ajpgi.00510.2003

(32) Gluud LL, Dam G, Borre M, Les I, Cordoba J, Marchesini G, et al. Oral branched-chain amino acids have a beneficial effect on manifestations of hepatic encephalopathy in a systematic review with meta-analyses of randomized controlled trials. J Nutr. 2013 Aug;143(8):1263-8. Disponible en: http://dx.doi.org/10.3945/jn.113.174375

(33) Tsien C, Davuluri G, Singh D, Allawy A, Ten Have GA, Thapaliya S, et al. Metabolic and molecular responses to leucine-enriched branched chain amino acid supplementation in the skeletal muscle of alcoholic cirrhosis. Hepatology. 2015 Jun;61(6):2018-29. Disponible en: http://dx.doi.org/10.1002/hep.27717

(34) Rodney S, Boneh A. Amino Acid Profiles in Patients with Urea Cycle Disorders at Admission to Hospital due to Metabolic Decompensation. JIMD Rep. 2013;9:97-104. Disponible en: http://dx.doi.org/10.1007/8904_2012_186

(35) Holecek M. Evidence of a vicious cycle in glutamine synthesis and breakdown in pathogenesis of hepatic encephalopathy-therapeutic perspectives. Metab Brain Dis. 2014 Mar;29(1):9-17. Disponible en: http://dx.doi.org/10.1007/s11011-013-9428-9

(36) Holecek M, Sprongl L, Tilser I, Tichý M. Leucine and protein metabolism in rats with chronic renal insufficiency. Exp Toxicol Pathol. 2001 Apr;53(1):71-6. Disponible en: http://dx.doi.org/10.1078/0940-2993-00171

(37) Garibotto G, Paoletti E, Fiorini F, Russo R, Robaudo C, Deferrari G, et al. Peripheral metabolism of branched-chain keto acids in patients with chronic renal failure. Miner Electrolyte Metab. 1993;19(1):25-31.

(38) Cano NJ, Fouque D, Leverve XM. Application of branched-chain amino acids in human pathological states: renal failure. J Nutr. 2006 Jan;136(1 Suppl):299S-307S. Disponible en: http://dx.doi.org/10.1093/jn/136.1.299S

(39) Kovesdy CP, Kopple JD, Kalantar-Zadeh K. Management of protein-energy wasting in non-dialysis-dependent chronic kidney disease: reconciling low protein intake with nutritional therapy. Am J Clin Nutr. 2013 Jun;97(6):1163-77. Disponible en: http://dx.doi.org/10.3945/ajcn.112.036418

(40) Scaini G, Jeremias IC, Morais MO, Borges GD, Munhoz BP, Leffa DD, et al. DNA damage in an animal model of maple syrup urine disease. Mol Genet Metab. 2012 Jun;106(2):169-74. Disponible en: http://dx.doi.org/10.1016/j.ymgme.2012.04.009

(41) Frazier DM, Allgeier C, Homer C, Marriage BJ, Ogata B, Rohr F, et al. Nutrition management guideline for maple syrup urine disease: an evidence- and consensus-based approach. Mol Genet Metab. 2014 Jul;112(3):210-7. Disponible en: http://dx.doi.org/10.1016/j.ymgme.2014.05.006

(42) Felig P, Marliss E, Cahill GF Jr. Plasma amino acid levels and insulin secretion in obesity. N Engl J Med. 1969 Oct 9;281(15):811-6. Disponible en: http://dx.doi.org/10.1056/NEJM196910092811503

(43) Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011 Apr;17(4):448-53. Disponible en: http://dx.doi.org/10.1038/nm.2307

(44) White PJ, Lapworth AL, An J, Wang L, McGarrah RW, Stevens RD, et al. Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export. Mol Metab. 2016 Apr 22;5(7):538-551. Disponible en: http://dx.doi.org/10.1016/j.molmet.2016.04.006

(45) She P, Van Horn C, Reid T, Hutson SM, Cooney RN, Lynch CJ. Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism. Am J Physiol Endocrinol Metab. 2007 Dec;293(6):E1552-63. Disponible en: http://dx.doi.org/10.1152/ajpendo.00134.2007

(46) Jachthuber Trub C, Balikcioglu M, Freemark M, Bain J, Muehlbauer M, Ilkayeva O, White PJ, Armstrong S, Østbye T, Grambow S, Gumus Balikcioglu P. Impact of lifestyle Intervention on branched-chain amino acid catabolism and insulin sensitivity in adolescents with obesity. Endocrinol Diabetes Metab. 2021 Apr 1;4(3):e00250. Disponible en: http://dx.doi.org/10.1002/edm2.250

(47) Felig P, Marliss E, Cahill GF Jr. Are plasma amino acid levels elevated in obesity? N Engl J Med. 1970 Jan 15;282(3):166. Disponible en: http://dx.doi.org/10.1056/nejm197001152820315

(48) Aronne LJ, Segal KR. Adiposity and fat distribution outcome measures: assessment and clinical implications. Obes Res. 2002 Nov;10 Suppl 1:14S-21S. Disponible en: http://dx.doi.org/10.1038/oby.2002.184

(49) Boden G, Homko C, Barrero CA, Stein TP, Chen X, Cheung P, Fecchio C, Koller S, Merali S. Excessive caloric intake acutely causes oxidative stress, GLUT4 carbonylation, and insulin resistance in healthy men. Sci Transl Med. 2015 Sep 9;7(304):304re7. Disponible en: http://dx.doi.org/10.1126/scitranslmed.aac4765

(50) Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. J Clin Invest. 2011 Jun;121(6):2111-7. Disponible en: http://dx.doi.org/10.1172/JCI57132

(51) McLaughlin T, Ackerman SE, Shen L, Engleman E. Role of innate and adaptive immunity in obesity-associated metabolic disease. J Clin Invest. 2017 Jan 3;127(1):5-13. Disponible en: http://dx.doi.org/10.1172/JCI88876

(52) Khan T, Muise ES, Iyengar P, Wang ZV, Chandalia M, Abate N, Zhang BB, Bonaldo P, Chua S, Scherer PE. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol Cell Biol. 2009 Mar;29(6):1575-91. Disponible en: http://dx.doi.org/10.1128/MCB.01300-08

(53) Lanthier N, Molendi-Coste O, Horsmans Y, van Rooijen N, Cani PD, Leclercq IA. Kupffer cell activation is a causal factor for hepatic insulin resistance. Am J Physiol Gastrointest Liver Physiol. 2010 Jan;298(1):G107-16. Disponible en: http://dx.doi.org/10.1152/ajpgi.00391.2009

(54) Obstfeld AE, Sugaru E, Thearle M, Francisco AM, Gayet C, Ginsberg HN, Ables EV, Ferrante AW Jr. C-C chemokine receptor 2 (CCR2) regulates the hepatic recruitment of myeloid cells that promote obesity-induced hepatic steatosis. Diabetes. 2010 Apr;59(4):916-25. Disponible en: http://dx.doi.org/10.2337/db09-1403

(55) Wu H, Ballantyne CM. Skeletal muscle inflammation and insulin resistance in obesity. J Clin Invest. 2017 Jan 3;127(1):43-54. Disponible en: http://dx.doi.org/10.1172/JCI88880

(56) Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL. Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol. 2008 Aug;10(8):935-45. Disponible en: http://dx.doi.org/10.1038/ncb1753

(57) Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell. 2010 Apr 16;141(2):290-303. Disponible en: http://dx.doi.org/10.1016/j.cell.2010.02.024

(58) Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and Disease. Cell. 2017 Mar 9;168(6):960-976. Disponible en: http://dx.doi.org/10.1016/j.cell.2017.02.004

(59) Mark H, Peroni O, Kahn B. Adipose-Specific Overexpression of Glut4 Causes Hypoglycemia by Altering Branched-Chain Amino Acid Metabolism. Diabetes. 2006. 55;1331-P. Disponible en: http://dx.doi.org/10.1152/ajpendo.00116.2005

(60) Yoon MS. The Emerging Role of Branched-Chain Amino Acids in Insulin Resistance and Metabolism. Nutrients. 2016 Jul 1;8(7):405. Disponible en: http://dx.doi.org/10.3390/nu8070405

(61) Joshi MA, Jeoung NH, Obayashi M, Hattab EM, Brocken EG, Liechty EA, et al. Impaired growth and neurological abnormalities in branched-chain alpha-keto acid dehydrogenase kinase-deficient mice. Biochem J. 2006 Nov 15;400(1):153-62. Disponible en: http://dx.doi.org/10.1042/BJ20060869

(62) She P, Reid TM, Bronson SK, Vary TC, Hajnal A, Lynch CJ, et al. Disruption of BCATm in mice leads to increased energy expenditure associated with the activation of a futile protein turnover cycle. Cell Metab. 2007 Sep;6(3):181-94. Disponible en: http://dx.doi.org/10.1016/j.cmet.2007.08.003

(63) Jang C, Oh SF, Wada S, Rowe GC, Liu L, Chan MC, et al. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nat Med. 2016 Apr;22(4):421-6. Disponible en: http://dx.doi.org/10.1038/nm.4057

(64) Shimomura Y, Honda T, Shiraki M, Murakami T, Sato J, Kobayashi H, et al. Branched-chain amino acid catabolism in exercise and liver disease. J Nutr. 2006 Jan;136(1 Suppl):250S-3S. Disponible en: http://dx.doi.org/10.1093/jn/136.1.250S

(65) Newgard CB. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 2012 May 2;15(5):606-14. Disponible en: http://dx.doi.org/10.1016/j.cmet.2012.01.024

(66) Macotela Y, Emanuelli B, Bång AM, Espinoza DO, Boucher J, Beebe K, et al. Dietary leucine--an environmental modifier of insulin resistance acting on multiple levels of metabolism. PLoS One. 2011;6(6):e21187. Disponible en: http://dx.doi.org/10.1371/journal.pone.0021187

(67) Hinault C, Mothe-Satney I, Gautier N, Lawrence JC Jr, Van Obberghen E. Amino acids and leucine allow insulin activation of the PKB/mTOR pathway in normal adipocytes treated with wortmannin and in adipocytes from db/db mice. FASEB J. 2004 Dec;18(15):1894-6. Disponible en: http://dx.doi.org/10.1096/fj.03-1409fje

(68) Suryawan A, Hawes JW, Harris RA, Shimomura Y, Jenkins AE, Hutson SM. A molecular model of human branched-chain amino acid metabolism. Am J Clin Nutr. 1998 Jul;68(1):72-81. Disponible en: http://dx.doi.org/10.1093/ajcn/68.1.72

(69) Luzi L, Castellino P, DeFronzo RA. Insulin and hyperaminoacidemia regulate by a different mechanism leucine turnover and oxidation in obesity. Am J Physiol. 1996 Feb;270(2 Pt 1):E273-81. Disponible en: http://dx.doi.org/10.1152/ajpendo.1996.270.2.E273

(70) Asghari G, Farhadnejad H, Teymoori F, Mirmiran P, Tohidi M, Azizi F. High dietary intake of branched-chain amino acids is associated with an increased risk of insulin resistance in adults. J Diabetes. 2018 May;10(5):357-364. Disponible en: http://dx.doi.org/10.1111/1753-0407.12639

(71) Zheng Y, Li Y, Qi Q, Hruby A, Manson JE, Willett WC, et al. Cumulative consumption of branched-chain amino acids and incidence of type 2 diabetes. Int J Epidemiol. 2016 Oct;45(5):1482-1492. Disponible en: http://dx.doi.org/10.1093/ije/dyw143

(72) Woo SL, Yang J, Hsu M, Yang A, Zhang L, Lee RP, et al. Effects of branched-chain amino acids on glucose metabolism in obese, prediabetic men and women: a randomized, crossover study. Am J Clin Nutr. 2019 Jun 1;109(6):1569-1577. Disponible en: http://dx.doi.org/10.1093/ajcn/nqz024

(73) Neis EP, Dejong CH, Rensen SS. The role of microbial amino acid metabolism in host metabolism. Nutrients. 2015 Apr 16;7(4):2930-46. Disponible en: http://dx.doi.org/10.3390/nu7042930

(74) Nagata C, Nakamura K, Wada K, Tsuji M, Tamai Y, Kawachi T. Branched-chain amino acid intake and the risk of diabetes in a Japanese community: the Takayama study. Am J Epidemiol. 2013 Oct 15;178(8):1226-32. Disponible en: http://dx.doi.org/10.1093/aje/kwt112

(75) Okekunle AP, Wu X, Duan W, Feng R, Li Y, Sun C. Dietary Intakes of Branched-Chained Amino Acid and Risk for Type 2 Diabetes in Adults: The Harbin Cohort Study on Diet, Nutrition and Chronic Non-Communicable Diseases Study. Can J Diabetes. 2018 Oct;42(5):484-492.e7. Disponible en: http://dx.doi.org/10.1016/j.jcjd.2017.12.003

(76) Karusheva Y, Koessler T, Strassburger K, Markgraf D, Mastrototaro L, Jelenik T, et al. Short-term dietary reduction of branched-chain amino acids reduces meal-induced insulin secretion and modifies microbiome composition in type 2 diabetes: a randomized controlled crossover trial. Am J Clin Nutr. 2019 Nov 1;110(5):1098-1107. Disponible en: http://dx.doi.org/10.1093/ajcn/nqz191

(77) Lamiquiz-Moneo I, Bea AM, Palacios-Pérez C, Miguel-Etayo P, González-Gil EM, López-Ariño C, et al. Effect of Lifestyle Intervention in the Concentration of Adipoquines and Branched Chain Amino Acids in Subjects with High Risk of Developing Type 2 Diabetes: Feel4Diabetes Study. Cells. 2020 Mar 12;9(3):693. Disponible en: http://dx.doi.org/10.3390/cells9030693

(78) Ruiz-Canela M, Guasch-Ferré M, Toledo E, Clish CB, Razquin C, Liang L, et al. Plasma branched chain/aromatic amino acids, enriched Mediterranean diet and risk of type 2 diabetes: case-cohort study within the PREDIMED Trial. Diabetologia. 2018 Jul;61(7):1560-1571. Disponible en: http://dx.doi.org/10.1007/s00125-018-4611-5

(79) Cavallaro NL, Garry J, Shi X, Gerszten RE, Anderson EJ, Walford GA. A pilot, short-term dietary manipulation of branched chain amino acids has modest influence on fasting levels of branched chain amino acids. Food Nutr Res. 2016 Jan 14;60:28592. Disponible en: http://dx.doi.org/10.3402/fnr.v60.28592

(80) Ramzan I, Taylor M, Phillips B, Wilkinson D, Smith K, Hession K, et al. A Novel Dietary Intervention Reduces Circulatory Branched-Chain Amino Acids by 50%: A Pilot Study of Relevance for Obesity and Diabetes. Nutrients. 2020 Dec 30;13(1):95. Disponible en: http://dx.doi.org/10.3390/nu13010095

(81) Xuan L, Hou Y, Wang T, Li M, Zhao Z, Lu J, et al. Association of branched chain amino acids related variant rs1440581 with risk of incident diabetes and longitudinal changes in insulin resistance in Chinese. Acta Diabetol. 2018 Sep;55(9):901-908. Disponible en: http://dx.doi.org/10.1007/s00592-018-1165-4

(82) Wang W, Jiang H, Zhang Z, Duan W, Han T, Sun C. Interaction between dietary branched-chain amino acids and genetic risk score on the risk of type 2 diabetes in Chinese. Genes Nutr. 2021 Mar 4;16(1):4. Disponible en: http://dx.doi.org/10.1186/s12263-021-00684-6

(83) Wang W, Liu Z, Liu L, Han T, Yang X, Sun C. Genetic predisposition to impaired metabolism of the branched chain amino acids, dietary intakes, and risk of type 2 diabetes. Genes Nutr. 2021 Nov 2;16(1):20. Disponible en: http://dx.doi.org/10.1186/s12263-021-00695-3

(84) Shou J, Chen PJ, Xiao WH. The Effects of BCAAs on Insulin Resistance in Athletes. J Nutr Sci Vitaminol (Tokyo). 2019;65(5):383-389. Disponible en: http://dx.doi.org/10.3177/jnsv.65.383

(85) Glynn EL, Piner LW, Huffman KM, Slentz CA, Elliot-Penry L, AbouAssi H, et al. Impact of combined resistance and aerobic exercise training on branched-chain amino acid turnover, glycine metabolism and insulin sensitivity in overweight humans. Diabetologia. 2015 Oct;58(10):2324-35. Disponible en: http://dx.doi.org/10.1007/s00125-015-3705-6