Efecto dual de los aminoácidos de cadena ramificada y su relación con la resistencia a la insulina


Resumen

La resistencia a la insulina es una complicación presente en sujetos con obesidad y se ha identificado
como un factor clave en la aparición y progresión de la diabetes mellitus. Numerosos estudios resaltan los
beneficios de una dieta con alto contenido de proteínas tanto para el tratamiento de la obesidad como para la resistencia a la insulina. No obstante, a pesar de dichos beneficios, una dieta hiperproteica se ha relacionado con una peor disfunción metabólica, e incluso empeorando la resistencia a la insulina. Gracias a estudios en metabolómica se ha postulado que los aminoácidos de cadena ramificada pueden estar mediando estos efectos contradictorios de una alta ingesta de proteínas y su relación con la resistencia a la insulina. En la presente revisión narrativa se recopila la evidencia emergente en cuanto al efecto paradójico que pueden desempeñar los aminoácidos de cadena ramificada en la homeostasis del organismo. Diferentes contextos como la presencia de obesidad, patrones dietéticos, origen de proteínas que contengan aminoácidos de cadena ramificada, ejercicio físico, microbiota intestinal, sexo, así como la carga genética, son variables a tener en cuenta para evaluar el rol de estos aminoácidos.

Palabras clave: BCAA, aminoácidos de cadena ramificada, resistencia a la insulina, obesidad, diabetes mellitus

##plugins.themes.bootstrap3.article.details##

Cómo citar

Pérez Lagos, F. (2022). Efecto dual de los aminoácidos de cadena ramificada y su relación con la resistencia a la insulina. MLS Health and Nutrition Research, 1(1). Recuperado a partir de https://www.mlsjournals.com/MLS-Health-Nutrition/article/view/964


Descargas

La descarga de datos todavía no está disponible.

Citas

1) Garber AJ. Obesity and type 2 diabetes: which patients are at risk? Diabetes Obes Metab. 2012 May;14(5):399-408. doi: 10.1111/j.1463-1326.2011.01536.x. Epub 2011 Dec 27. PMID: 22074144. https://pubmed.ncbi.nlm.nih.gov/22074144/

2) Reaven GM. Insulin resistance/compensatory hyperinsulinemia, essential hypertension, and cardiovascular disease. J Clin Endocrinol Metab. 2003 Jun;88(6):2399-403. doi: 10.1210/jc.2003-030087. https://pubmed.ncbi.nlm.nih.gov/12788834/

3) Hansen TT, Astrup A, Sjödin A. Are Dietary Proteins the Key to Successful Body Weight Management? A Systematic Review and Meta-Analysis of Studies Assessing Body Weight Outcomes after Interventions with Increased Dietary Protein. Nutrients. 2021 Sep 14;13(9):3193. doi: 10.3390/nu13093193. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8468854/

4) Gil Á. Tratado de nutrición. Tomo 1. Bases fisiológicas y bioquímicas de la nutrición. Medicina contreras (ed.). Madrid: Acción Medica; 2005

5) Greco E, Winquist A, Lee, T. J., Collins, S., Lebovic, Z., Zerbe-Kessinger, T, et al. The role of source of protein in regulation of food intake, satiety, body weight and body composition. J. Nutr. Health Food Eng. 20176(6), 00223

6) Huang G, Pencina K, Li Z, Apovian CM, Travison TG, Storer TW, et al. Effect of Protein Intake on Visceral Abdominal Fat and Metabolic Biomarkers in Older Men With Functional Limitations: Results From a Randomized Clinical Trial. J Gerontol A Biol Sci Med Sci. 2021 May 22;76(6):1084-1089. doi: 10.1093/gerona/glab007. https://pubmed.ncbi.nlm.nih.gov/33417663/

7) El Khoury D, Hwalla N. Metabolic and appetite hormone responses of hyperinsulinemic normoglycemic males to meals with varied macronutrient compositions. Ann Nutr Metab. 2010;57(1):59-67. doi: 10.1159/000317343. https://pubmed.ncbi.nlm.nih.gov/20714138/

8) Rietman A, Schwarz J, Tomé D, Kok FJ, Mensink M. High dietary protein intake, reducing or eliciting insulin resistance? Eur J Clin Nutr. 2014 Sep;68(9):973-9. doi: 10.1038/ejcn.2014.123. https://pubmed.ncbi.nlm.nih.gov/24986822/

9) Ricci G, Canducci E, Pasini V, Rossi A, Bersani G, Ricci E, et al. Nutrient intake in Italian obese patients: relationships with insulin resistance and markers of non-alcoholic fatty liver disease. Nutrition. 2011 Jun;27(6):672-6. doi: 10.1016/j.nut.2010.07.014. https://pubmed.ncbi.nlm.nih.gov/20961734/

10) Sluijs I, Beulens JW, van der A DL, Spijkerman AM, Grobbee DE, van der Schouw YT. Dietary intake of total, animal, and vegetable protein and risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-NL study. Diabetes Care. 2010 Jan;33(1):43-8. doi: 10.2337/dc09-1321. https://pubmed.ncbi.nlm.nih.gov/19825820/

11) Layman DK, Baum JI. Dietary protein impact on glycemic control during weight loss. J Nutr. 2004 Apr;134(4):968S-73S. doi: 10.1093/jn/134.4.968S. PMID: 15051856. https://pubmed.ncbi.nlm.nih.gov/15051856/

12) Nair KS, Short KR. Hormonal and signaling role of branched-chain amino acids. J Nutr. 2005 Jun;135(6 Suppl):1547S-52S. doi: 10.1093/jn/135.6.1547S. https://pubmed.ncbi.nlm.nih.gov/15930467/

13) Haydar S, Paillot T, Fagot C, Cogne Y, Fountas A, Tutuncu Y, et al. Branched-Chain Amino Acid Database Integrated in MEDIPAD Software as a Tool for Nutritional Investigation of Mediterranean Populations. Nutrients. 2018 Oct 1;10(10):1392. doi: 10.3390/nu10101392. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6213539/

14) Layman DK, Walker DA. Potential importance of leucine in treatment of obesity and the metabolic syndrome. J Nutr. 2006 Jan;136(1 Suppl):319S-23S. doi: 10.1093/jn/136.1.319S. https://pubmed.ncbi.nlm.nih.gov/16365106/

15) Doi M, Yamaoka I, Nakayama M, Sugahara K, Yoshizawa F. Hypoglycemic effect of isoleucine involves increased muscle glucose uptake and whole body glucose oxidation and decreased hepatic gluconeogenesis. Am J Physiol Endocrinol Metab. 2007 Jun;292(6):E1683-93. doi: 10.1152/ajpendo.00609.2006. https://pubmed.ncbi.nlm.nih.gov/17299083/

16) Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009 Apr;9(4):311-26. doi: 10.1016/j.cmet.2009.02.002. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3640280/

17) Boirie Y, Dangin M, Gachon P, Vasson MP, Maubois JL, Beaufrère B. Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14930-5. doi: 10.1073/pnas.94.26.14930. https://pubmed.ncbi.nlm.nih.gov/9405716/

18) Dangin M, Boirie Y, Garcia-Rodenas C, Gachon P, Fauquant J, Callier P, et al. The digestion rate of protein is an independent regulating factor of postprandial protein retention. Am J Physiol Endocrinol Metab. 2001 Feb;280(2):E340-8. doi: 10.1152/ajpendo.2001.280.2.E340. https://pubmed.ncbi.nlm.nih.gov/11158939/

19) Harper AE, Miller RH, Block KP. Branched-chain amino acid metabolism. Annu Rev Nutr. 1984;4:409-54. doi: 10.1146/annurev.nu.04.070184.002205. https://pubmed.ncbi.nlm.nih.gov/6380539/

20) Stipanuk MH, Caudill MA. Biochemical, physiological, and molecular aspects of human nutrition. San Louis: Elsevier; 2018

21) Jahan-Mihan A, Luhovyy BL, El Khoury D, Anderson GH. Dietary proteins as determinants of metabolic and physiologic functions of the gastrointestinal tract. Nutrients. 2011 May;3(5):574-603. doi: 10.3390/nu3050574. https://pubmed.ncbi.nlm.nih.gov/22254112/

22) Brosnan JT, Brosnan ME. Branched-chain amino acids: enzyme and substrate regulation. J Nutr. 2006 Jan;136(1 Suppl):207S-11S. doi: 10.1093/jn/136.1.207S. https://pubmed.ncbi.nlm.nih.gov/16365084/

23) Holeček M. Branched-chain amino acids in health and disease: metabolism, alterations in blood plasma, and as supplements. Nutr Metab (Lond). 2018 May 3;15:33. doi: 10.1186/s12986-018-0271-1. https://pubmed.ncbi.nlm.nih.gov/29755574/

24) Blomstrand E, Eliasson J, Karlsson HK, Köhnke R. Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J Nutr. 2006 Jan;136(1 Suppl):269S-73S. doi: 10.1093/jn/136.1.269S. https://pubmed.ncbi.nlm.nih.gov/16365096/

25) Wolfe RR. Branched-chain amino acids and muscle protein synthesis in humans: myth or reality? J Int Soc Sports Nutr. 2017 Aug 22;14:30. doi: 10.1186/s12970-017-0184-9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5568273/

26) Nie C, He T, Zhang W, Zhang G, Ma X. Branched Chain Amino Acids: Beyond Nutrition Metabolism. Int J Mol Sci. 2018 Mar 23;19(4):954. doi: 10.3390/ijms19040954. https://pubmed.ncbi.nlm.nih.gov/29570613/

27) Zhang S, Zeng X, Ren M, Mao X, Qiao S. Novel metabolic and physiological functions of branched chain amino acids: a review. J Anim Sci Biotechnol. 2017 Jan 23;8:10. doi: 10.1186/s40104-016-0139-z. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5260006/

28) Tsochatzis EA, Bosch J, Burroughs AK. Liver cirrhosis. Lancet. 2014 May 17;383(9930):1749-61. doi: 10.1016/S0140-6736(14)60121-5. https://pubmed.ncbi.nlm.nih.gov/24480518/

29) Holecek M, Kandar R, Sispera L, Kovarik M. Acute hyperammonemia activates branched-chain amino acid catabolism and decreases their extracellular concentrations: different sensitivity of red and white muscle. Amino Acids. 2011 Feb;40(2):575-84. doi: 10.1007/s00726-010-0679-z. https://pubmed.ncbi.nlm.nih.gov/20614225/

30) Holeček M. Branched-chain amino acid supplementation in treatment of liver cirrhosis: Updated views on how to attenuate their harmful effects on cataplerosis and ammonia formation. Nutrition. 2017 Sep;41:80-85. doi: 10.1016/j.nut.2017.04.003. https://pubmed.ncbi.nlm.nih.gov/28760433/

31) Nishitani S, Takehana K, Fujitani S, Sonaka I. Branched-chain amino acids improve glucose metabolism in rats with liver cirrhosis. Am J Physiol Gastrointest Liver Physiol. 2005 Jun;288(6):G1292-300. doi: 10.1152/ajpgi.00510.2003. https://pubmed.ncbi.nlm.nih.gov/15591158/

32) Gluud LL, Dam G, Borre M, Les I, Cordoba J, Marchesini G, et al. Oral branched-chain amino acids have a beneficial effect on manifestations of hepatic encephalopathy in a systematic review with meta-analyses of randomized controlled trials. J Nutr. 2013 Aug;143(8):1263-8. doi: 10.3945/jn.113.174375. https://pubmed.ncbi.nlm.nih.gov/23739310/

33) Tsien C, Davuluri G, Singh D, Allawy A, Ten Have GA, Thapaliya S, et al. Metabolic and molecular responses to leucine-enriched branched chain amino acid supplementation in the skeletal muscle of alcoholic cirrhosis. Hepatology. 2015 Jun;61(6):2018-29. doi: 10.1002/hep.27717. https://pubmed.ncbi.nlm.nih.gov/25613922/)

34) Rodney S, Boneh A. Amino Acid Profiles in Patients with Urea Cycle Disorders at Admission to Hospital due to Metabolic Decompensation. JIMD Rep. 2013;9:97-104. doi: 10.1007/8904_2012_186. https://pubmed.ncbi.nlm.nih.gov/23430554/

35) Holecek M. Evidence of a vicious cycle in glutamine synthesis and breakdown in pathogenesis of hepatic encephalopathy-therapeutic perspectives. Metab Brain Dis. 2014 Mar;29(1):9-17. doi: 10.1007/s11011-013-9428-9. https://pubmed.ncbi.nlm.nih.gov/23996300/

36) Holecek M, Sprongl L, Tilser I, Tichý M. Leucine and protein metabolism in rats with chronic renal insufficiency. Exp Toxicol Pathol. 2001 Apr;53(1):71-6. doi: 10.1078/0940-2993-00171. https://pubmed.ncbi.nlm.nih.gov/11370737/

37) Garibotto G, Paoletti E, Fiorini F, Russo R, Robaudo C, Deferrari G, et al. Peripheral metabolism of branched-chain keto acids in patients with chronic renal failure. Miner Electrolyte Metab. 1993;19(1):25-31. https://pubmed.ncbi.nlm.nih.gov/8345831/

38) Cano NJ, Fouque D, Leverve XM. Application of branched-chain amino acids in human pathological states: renal failure. J Nutr. 2006 Jan;136(1 Suppl):299S-307S. doi: 10.1093/jn/136.1.299S. https://pubmed.ncbi.nlm.nih.gov/16365103/)

39) Kovesdy CP, Kopple JD, Kalantar-Zadeh K. Management of protein-energy wasting in non-dialysis-dependent chronic kidney disease: reconciling low protein intake with nutritional therapy. Am J Clin Nutr. 2013 Jun;97(6):1163-77. doi: 10.3945/ajcn.112.036418. https://pubmed.ncbi.nlm.nih.gov/23636234/

40) Scaini G, Jeremias IC, Morais MO, Borges GD, Munhoz BP, Leffa DD, et al. DNA damage in an animal model of maple syrup urine disease. Mol Genet Metab. 2012 Jun;106(2):169-74. doi: 10.1016/j.ymgme.2012.04.009. https://pubmed.ncbi.nlm.nih.gov/22560665/

41) Frazier DM, Allgeier C, Homer C, Marriage BJ, Ogata B, Rohr F, et al. Nutrition management guideline for maple syrup urine disease: an evidence- and consensus-based approach. Mol Genet Metab. 2014 Jul;112(3):210-7. doi: 10.1016/j.ymgme.2014.05.006. https://pubmed.ncbi.nlm.nih.gov/24881969/

42) Felig P, Marliss E, Cahill GF Jr. Plasma amino acid levels and insulin secretion in obesity. N Engl J Med. 1969 Oct 9;281(15):811-6. doi: 10.1056/NEJM196910092811503. https://pubmed.ncbi.nlm.nih.gov/5809519/

43) Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011 Apr;17(4):448-53. doi: 10.1038/nm.2307. https://pubmed.ncbi.nlm.nih.gov/21423183/

44) White PJ, Lapworth AL, An J, Wang L, McGarrah RW, Stevens RD, et al. Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export. Mol Metab. 2016 Apr 22;5(7):538-551. doi: 10.1016/j.molmet.2016.04.006. https://pubmed.ncbi.nlm.nih.gov/27408778/

45) She P, Van Horn C, Reid T, Hutson SM, Cooney RN, Lynch CJ. Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism. Am J Physiol Endocrinol Metab. 2007 Dec;293(6):E1552-63. doi: 10.1152/ajpendo.00134.2007. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2767201/

46) Jachthuber Trub C, Balikcioglu M, Freemark M, Bain J, Muehlbauer M, Ilkayeva O, White PJ, Armstrong S, Østbye T, Grambow S, Gumus Balikcioglu P. Impact of lifestyle Intervention on branched-chain amino acid catabolism and insulin sensitivity in adolescents with obesity. Endocrinol Diabetes Metab. 2021 Apr 1;4(3):e00250. doi: 10.1002/edm2.250. https://pubmed.ncbi.nlm.nih.gov/34277974/

47) Felig P, Marliss E, Cahill GF Jr. Are plasma amino acid levels elevated in obesity? N Engl J Med. 1970 Jan 15;282(3):166. doi: 10.1056/nejm197001152820315. https://pubmed.ncbi.nlm.nih.gov/5409545/

48) Aronne LJ, Segal KR. Adiposity and fat distribution outcome measures: assessment and clinical implications. Obes Res. 2002 Nov;10 Suppl 1:14S-21S. doi: 10.1038/oby.2002.184. PMID: 12446853. https://pubmed.ncbi.nlm.nih.gov/12446853/

49) Boden G, Homko C, Barrero CA, Stein TP, Chen X, Cheung P, Fecchio C, Koller S, Merali S. Excessive caloric intake acutely causes oxidative stress, GLUT4 carbonylation, and insulin resistance in healthy men. Sci Transl Med. 2015 Sep 9;7(304):304re7. doi: 10.1126/scitranslmed.aac4765. https://pubmed.ncbi.nlm.nih.gov/26355033/

50) Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. J Clin Invest. 2011 Jun;121(6):2111-7. doi: 10.1172/JCI57132. https://pubmed.ncbi.nlm.nih.gov/21633179/

51) McLaughlin T, Ackerman SE, Shen L, Engleman E. Role of innate and adaptive immunity in obesity-associated metabolic disease. J Clin Invest. 2017 Jan 3;127(1):5-13. doi: 10.1172/JCI88876. https://pubmed.ncbi.nlm.nih.gov/28045397/

52) Khan T, Muise ES, Iyengar P, Wang ZV, Chandalia M, Abate N, Zhang BB, Bonaldo P, Chua S, Scherer PE. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol Cell Biol. 2009 Mar;29(6):1575-91. doi: 10.1128/MCB.01300-08. https://pubmed.ncbi.nlm.nih.gov/19114551/

53) Lanthier N, Molendi-Coste O, Horsmans Y, van Rooijen N, Cani PD, Leclercq IA. Kupffer cell activation is a causal factor for hepatic insulin resistance. Am J Physiol Gastrointest Liver Physiol. 2010 Jan;298(1):G107-16. doi: 10.1152/ajpgi.00391.2009. https://pubmed.ncbi.nlm.nih.gov/19875703/)

54) Obstfeld AE, Sugaru E, Thearle M, Francisco AM, Gayet C, Ginsberg HN, Ables EV, Ferrante AW Jr. C-C chemokine receptor 2 (CCR2) regulates the hepatic recruitment of myeloid cells that promote obesity-induced hepatic steatosis. Diabetes. 2010 Apr;59(4):916-25. doi: 10.2337/db09-1403. https://pubmed.ncbi.nlm.nih.gov/20103702/

55) Wu H, Ballantyne CM. Skeletal muscle inflammation and insulin resistance in obesity. J Clin Invest. 2017 Jan 3;127(1):43-54. doi: 10.1172/JCI88880. https://pubmed.ncbi.nlm.nih.gov/28045398/

56) Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL. Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol. 2008 Aug;10(8):935-45. doi: 10.1038/ncb1753. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2711503/

57) Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell. 2010 Apr 16;141(2):290-303. doi: 10.1016/j.cell.2010.02.024. https://pubmed.ncbi.nlm.nih.gov/20381137

58) Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and Disease. Cell. 2017 Mar 9;168(6):960-976. doi: 10.1016/j.cell.2017.02.004. Erratum in: Cell. 2017 Apr 6;169(2):361-371. https://pubmed.ncbi.nlm.nih.gov/28283069/

59) Mark H, Peroni O, Kahn B. Adipose-Specific Overexpression of Glut4 Causes Hypoglycemia by Altering Branched-Chain Amino Acid Metabolism. Diabetes. 2006. 55;1331-P.

60) Yoon MS. The Emerging Role of Branched-Chain Amino Acids in Insulin Resistance and Metabolism. Nutrients. 2016 Jul 1;8(7):405. doi: 10.3390/nu8070405. https://pubmed.ncbi.nlm.nih.gov/27376324/

61) Joshi MA, Jeoung NH, Obayashi M, Hattab EM, Brocken EG, Liechty EA, et al. Impaired growth and neurological abnormalities in branched-chain alpha-keto acid dehydrogenase kinase-deficient mice. Biochem J. 2006 Nov 15;400(1):153-62. doi: 10.1042/BJ20060869. https://pubmed.ncbi.nlm.nih.gov/16875466/

62) She P, Reid TM, Bronson SK, Vary TC, Hajnal A, Lynch CJ, et al. Disruption of BCATm in mice leads to increased energy expenditure associated with the activation of a futile protein turnover cycle. Cell Metab. 2007 Sep;6(3):181-94. doi: 10.1016/j.cmet.2007.08.003. https://pubmed.ncbi.nlm.nih.gov/17767905/

63) Jang C, Oh SF, Wada S, Rowe GC, Liu L, Chan MC, et al. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nat Med. 2016 Apr;22(4):421-6. doi: 10.1038/nm.4057. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4949205/)

64) Shimomura Y, Honda T, Shiraki M, Murakami T, Sato J, Kobayashi H, et al. Branched-chain amino acid catabolism in exercise and liver disease. J Nutr. 2006 Jan;136(1 Suppl):250S-3S. doi: 10.1093/jn/136.1.250S. https://pubmed.ncbi.nlm.nih.gov/16365092/

65) Newgard CB. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 2012 May 2;15(5):606-14. doi: 10.1016/j.cmet.2012.01.024. https://pubmed.ncbi.nlm.nih.gov/22560213/

66) Macotela Y, Emanuelli B, Bång AM, Espinoza DO, Boucher J, Beebe K, et al. Dietary leucine--an environmental modifier of insulin resistance acting on multiple levels of metabolism. PLoS One. 2011;6(6):e21187. doi: 10.1371/journal.pone.0021187. https://pubmed.ncbi.nlm.nih.gov/21731668/)

67) Hinault C, Mothe-Satney I, Gautier N, Lawrence JC Jr, Van Obberghen E. Amino acids and leucine allow insulin activation of the PKB/mTOR pathway in normal adipocytes treated with wortmannin and in adipocytes from db/db mice. FASEB J. 2004 Dec;18(15):1894-6. doi: 10.1096/fj.03-1409fje. https://pubmed.ncbi.nlm.nih.gov/15479767/

68) Suryawan A, Hawes JW, Harris RA, Shimomura Y, Jenkins AE, Hutson SM. A molecular model of human branched-chain amino acid metabolism. Am J Clin Nutr. 1998 Jul;68(1):72-81. doi: 10.1093/ajcn/68.1.72. https://pubmed.ncbi.nlm.nih.gov/9665099/

69) Luzi L, Castellino P, DeFronzo RA. Insulin and hyperaminoacidemia regulate by a different mechanism leucine turnover and oxidation in obesity. Am J Physiol. 1996 Feb;270(2 Pt 1):E273-81. doi: 10.1152/ajpendo.1996.270.2.E273. https://pubmed.ncbi.nlm.nih.gov/8779949/

70) Asghari G, Farhadnejad H, Teymoori F, Mirmiran P, Tohidi M, Azizi F. High dietary intake of branched-chain amino acids is associated with an increased risk of insulin resistance in adults. J Diabetes. 2018 May;10(5):357-364. doi: 10.1111/1753-0407.12639. https://pubmed.ncbi.nlm.nih.gov/29281182/

71) Zheng Y, Li Y, Qi Q, Hruby A, Manson JE, Willett WC, et al. Cumulative consumption of branched-chain amino acids and incidence of type 2 diabetes. Int J Epidemiol. 2016 Oct;45(5):1482-1492. doi: 10.1093/ije/dyw143. https://pubmed.ncbi.nlm.nih.gov/27413102/

72) Woo SL, Yang J, Hsu M, Yang A, Zhang L, Lee RP, et al. Effects of branched-chain amino acids on glucose metabolism in obese, prediabetic men and women: a randomized, crossover study. Am J Clin Nutr. 2019 Jun 1;109(6):1569-1577. doi: 10.1093/ajcn/nqz024. https://pubmed.ncbi.nlm.nih.gov/31005973

73) Neis EP, Dejong CH, Rensen SS. The role of microbial amino acid metabolism in host metabolism. Nutrients. 2015 Apr 16;7(4):2930-46. doi: 10.3390/nu7042930. https://pubmed.ncbi.nlm.nih.gov/25894657/

74) Nagata C, Nakamura K, Wada K, Tsuji M, Tamai Y, Kawachi T. Branched-chain amino acid intake and the risk of diabetes in a Japanese community: the Takayama study. Am J Epidemiol. 2013 Oct 15;178(8):1226-32. doi: 10.1093/aje/kwt112. https://pubmed.ncbi.nlm.nih.gov/24008908/

75) Okekunle AP, Wu X, Duan W, Feng R, Li Y, Sun C. Dietary Intakes of Branched-Chained Amino Acid and Risk for Type 2 Diabetes in Adults: The Harbin Cohort Study on Diet, Nutrition and Chronic Non-Communicable Diseases Study. Can J Diabetes. 2018 Oct;42(5):484-492.e7. doi: 10.1016/j.jcjd.2017.12.003. https://pubmed.ncbi.nlm.nih.gov/29625864/

76) Karusheva Y, Koessler T, Strassburger K, Markgraf D, Mastrototaro L, Jelenik T, et al. Short-term dietary reduction of branched-chain amino acids reduces meal-induced insulin secretion and modifies microbiome composition in type 2 diabetes: a randomized controlled crossover trial. Am J Clin Nutr. 2019 Nov 1;110(5):1098-1107. doi: 10.1093/ajcn/nqz191. https://pubmed.ncbi.nlm.nih.gov/31667519

77) Lamiquiz-Moneo I, Bea AM, Palacios-Pérez C, Miguel-Etayo P, González-Gil EM, López-Ariño C, et al. Effect of Lifestyle Intervention in the Concentration of Adipoquines and Branched Chain Amino Acids in Subjects with High Risk of Developing Type 2 Diabetes: Feel4Diabetes Study. Cells. 2020 Mar 12;9(3):693. doi: 10.3390/cells9030693. https://pubmed.ncbi.nlm.nih.gov/32178221/

78) Ruiz-Canela M, Guasch-Ferré M, Toledo E, Clish CB, Razquin C, Liang L, et al. Plasma branched chain/aromatic amino acids, enriched Mediterranean diet and risk of type 2 diabetes: case-cohort study within the PREDIMED Trial. Diabetologia. 2018 Jul;61(7):1560-1571. doi: 10.1007/s00125-018-4611-5. https://pubmed.ncbi.nlm.nih.gov/29663011/

79) Cavallaro NL, Garry J, Shi X, Gerszten RE, Anderson EJ, Walford GA. A pilot, short-term dietary manipulation of branched chain amino acids has modest influence on fasting levels of branched chain amino acids. Food Nutr Res. 2016 Jan 14;60:28592. doi: 10.3402/fnr.v60.28592

80) Ramzan I, Taylor M, Phillips B, Wilkinson D, Smith K, Hession K, et al. A Novel Dietary Intervention Reduces Circulatory Branched-Chain Amino Acids by 50%: A Pilot Study of Relevance for Obesity and Diabetes. Nutrients. 2020 Dec 30;13(1):95. doi: 10.3390/nu13010095. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7824725/

81) Xuan L, Hou Y, Wang T, Li M, Zhao Z, Lu J, et al. Association of branched chain amino acids related variant rs1440581 with risk of incident diabetes and longitudinal changes in insulin resistance in Chinese. Acta Diabetol. 2018 Sep;55(9):901-908. doi: 10.1007/s00592-018-1165-4. https://pubmed.ncbi.nlm.nih.gov/29855804/

82) Wang W, Jiang H, Zhang Z, Duan W, Han T, Sun C. Interaction between dietary branched-chain amino acids and genetic risk score on the risk of type 2 diabetes in Chinese. Genes Nutr. 2021 Mar 4;16(1):4. doi: 10.1186/s12263-021-00684-6. https://pubmed.ncbi.nlm.nih.gov/33663374/

83) Wang W, Liu Z, Liu L, Han T, Yang X, Sun C. Genetic predisposition to impaired metabolism of the branched chain amino acids, dietary intakes, and risk of type 2 diabetes. Genes Nutr. 2021 Nov 2;16(1):20. doi: 10.1186/s12263-021-00695-3. https://pubmed.ncbi.nlm.nih.gov/34727893/).

84) Shou J, Chen PJ, Xiao WH. The Effects of BCAAs on Insulin Resistance in Athletes. J Nutr Sci Vitaminol (Tokyo). 2019;65(5):383-389. doi: 10.3177/jnsv.65.383. https://pubmed.ncbi.nlm.nih.gov/31666474/

85) Glynn EL, Piner LW, Huffman KM, Slentz CA, Elliot-Penry L, AbouAssi H, et al. Impact of combined resistance and aerobic exercise training on branched-chain amino acid turnover, glycine metabolism and insulin sensitivity in overweight humans. Diabetologia. 2015 Oct;58(10):2324-35. doi: 10.1007/s00125-015-3705-6. https://pubmed.ncbi.nlm.nih.gov/26254576/